Extensions 1→N→G→Q→1 with N=C33:8(C2xC4) and Q=C2

Direct product G=NxQ with N=C33:8(C2xC4) and Q=C2
dρLabelID
C2xC33:8(C2xC4)72C2xC3^3:8(C2xC4)432,679

Semidirect products G=N:Q with N=C33:8(C2xC4) and Q=C2
extensionφ:Q→Out NdρLabelID
C33:8(C2xC4):1C2 = (S3xC6):D6φ: C2/C1C2 ⊆ Out C33:8(C2xC4)248+C3^3:8(C2xC4):1C2432,601
C33:8(C2xC4):2C2 = (S3xC6).D6φ: C2/C1C2 ⊆ Out C33:8(C2xC4)248+C3^3:8(C2xC4):2C2432,606
C33:8(C2xC4):3C2 = D6.3S32φ: C2/C1C2 ⊆ Out C33:8(C2xC4)248+C3^3:8(C2xC4):3C2432,609
C33:8(C2xC4):4C2 = Dic3.S32φ: C2/C1C2 ⊆ Out C33:8(C2xC4)248+C3^3:8(C2xC4):4C2432,612
C33:8(C2xC4):5C2 = C12.40S32φ: C2/C1C2 ⊆ Out C33:8(C2xC4)72C3^3:8(C2xC4):5C2432,665
C33:8(C2xC4):6C2 = C12.58S32φ: C2/C1C2 ⊆ Out C33:8(C2xC4)72C3^3:8(C2xC4):6C2432,669
C33:8(C2xC4):7C2 = C62.90D6φ: C2/C1C2 ⊆ Out C33:8(C2xC4)72C3^3:8(C2xC4):7C2432,675
C33:8(C2xC4):8C2 = C62.93D6φ: C2/C1C2 ⊆ Out C33:8(C2xC4)72C3^3:8(C2xC4):8C2432,678
C33:8(C2xC4):9C2 = C62:23D6φ: C2/C1C2 ⊆ Out C33:8(C2xC4)36C3^3:8(C2xC4):9C2432,686
C33:8(C2xC4):10C2 = S3xC6.D6φ: C2/C1C2 ⊆ Out C33:8(C2xC4)248+C3^3:8(C2xC4):10C2432,595
C33:8(C2xC4):11C2 = C4xS3xC3:S3φ: trivial image72C3^3:8(C2xC4):11C2432,670

Non-split extensions G=N.Q with N=C33:8(C2xC4) and Q=C2
extensionφ:Q→Out NdρLabelID
C33:8(C2xC4).1C2 = C33:6(C2xQ8)φ: C2/C1C2 ⊆ Out C33:8(C2xC4)248+C3^3:8(C2xC4).1C2432,605
C33:8(C2xC4).2C2 = C32:9(S3xQ8)φ: C2/C1C2 ⊆ Out C33:8(C2xC4)72C3^3:8(C2xC4).2C2432,666
C33:8(C2xC4).3C2 = C33:5(C2xC8)φ: C2/C1C2 ⊆ Out C33:8(C2xC4)248+C3^3:8(C2xC4).3C2432,571
C33:8(C2xC4).4C2 = C33:2M4(2)φ: C2/C1C2 ⊆ Out C33:8(C2xC4)248+C3^3:8(C2xC4).4C2432,573

׿
x
:
Z
F
o
wr
Q
<